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ABSTRACT
Disk schedulers in current operating systems are generally
work-conserving, i.e., they schedule a request as soon as
the previous request has �nished. Such schedulers often re-
quire multiple outstanding requests from each process to meet
system-level goals of performance and quality of service. Un-
fortunately, many common applications issue disk read re-
quests in a synchronous manner, interspersing successive
requests with short periods of computation. The scheduler
chooses the next request too early; this induces deceptive
idleness, a condition where the scheduler incorrectly assumes
that the last request issuing process has no further requests,
and becomes forced to switch to a request from another pro-
cess.

We propose the anticipatory disk scheduling framework to
solve this problem in a simple, general and transparent way,
based on the non-work-conserving scheduling discipline. Our
FreeBSD implementation is observed to yield large bene�ts
on a range of microbenchmarks and real workloads. The
Apache webserver delivers between 29% and 71% more throu-
ghput on a disk-intensive workload. The Andrew �lesystem
benchmark runs faster by 8%, due to a speedup of 54% in
its read-intensive phase. Variants of the TPC-B database
benchmark exhibit improvements between 2% and 60%. Pro-
portional-share schedulers are seen to achieve their contracts
accurately and eÆciently.

1. INTRODUCTION
Disk scheduling has been an integral part of operating sys-
tem functionality since the early days [7, 13, 15, 22, 34]. This
paper examines disk scheduling from a system-wide perspec-
tive, identi�es a phenomenon called deceptive idleness and
proposes anticipatory scheduling as an e�ective solution.

Disk schedulers are typically work-conserving, since they se-
lect a request for service as soon as (or before) the previous
request has completed [23]. Now consider processes issu-
ing disk requests synchronously: each process issues a new

request shortly after its previous request has �nished, and
thus maintains at most one outstanding request at any time.
This forces the scheduler into making a decision too early,
so it assumes that the process issuing the last request has
momentarily no further disk requests, and selects a request
from some other process. It thus su�ers from a condition
we call deceptive idleness, and becomes incapable of consec-
utively servicing more than one request from any process.

It is common for data requested by a process to be sequen-
tially positioned on disk. Nevertheless, deceptive idleness
forces a seek optimizing scheduler to multiplex between re-
quests from di�erent processes. The ensuing head seeks can
cause performance degradation by up to a factor of four,
as shown in the next section. In the related problem of
proportional-share disk scheduling, meeting a given contract
(i.e., a proportion assignment) may require the scheduler
to consecutively service several requests from some process.
Deceptive idleness precludes this requirement, thus limiting
the scheduler's capacity to satisfy certain contracts. In both
cases, the scheduler is reordering the available requests cor-
rectly, but system-wide goals are not met.

This paper proposes the anticipatory disk scheduling frame-
work, and applies it to various disk scheduling policies. It
solves deceptive idleness as follows: before choosing a re-
quest for service, it sometimes introduces a short, controlled
delay period, during which the disk scheduler waits for ad-
ditional requests to arrive from the process that issued the
last serviced request. The disk is kept idle for short periods
of time, but the bene�ts gained from being able to service
multiple requests from the same process easily outweigh this
loss in utilization. The framework is thus an application of
the non-work-conserving scheduling discipline. The exact
tradeo�s are sensitive to the original scheduling policy, so
to determine whether and how long to wait each time, we
propose adaptive heuristics based on a simple cost-bene�t
analysis.

We implement anticipatory scheduling as a kernel module in
the FreeBSD operating system, evaluate it against a range
of microbenchmarks and real workloads, and observe sig-
ni�cant performance improvements and better adherence
to quality of service objectives. For a trace-based, disk-
intensive workload, the Apache webserver delivers between
29% and 71% more throughput by capitalizing on seek re-
duction within �les. The synchronous, read-intensive phase
of the Andrew �lesystem benchmark runs faster by 54% due
to seek reduction both between �les and within each �le;



consequently, the overall benchmark improves by 8%. Vari-
ants of the TPC-B database benchmark exhibit speedups
between 2% and 60%: in the latter case, deviating from
a standard TPC-B setup, by subjecting read-only queries
to multiple separate databases leads to more seek reduction
opportunities. The Stride proportional disk scheduler [32]
achieves its assigned allocations even for synchronous I/O
(assuming there is suÆcient load), and simultaneously de-
livers high throughput.

After an exposition and analysis of deceptive idleness, we
describe anticipatory scheduling in Section 3, and delve into
a detailed experimental evaluation in Section 4. We discuss
some emergent issues in Section 5, describe related work in
Section 6, and conclude.

2. DECEPTIVE IDLENESS
This section describes and analyzes the phenomenon of de-
ceptive idleness with two examples. In each case, the sched-
uler faces a shortage of the desired type of requests at critical
moments.

Example #1: Seek reducing schedulers
Here is an example of how a seek reducing disk scheduler can
degenerate to FCFS-like behaviour, and potentially su�er
throughput loss by a factor of 4. Consider an operating sys-
tem equipped with any seek reducing scheduler, like Short-
est Positioning-Time First (SPTF) or CSCAN [34]. Let
two disk-intensive processes p and q each issue several disk
requests to separate sets of sequentially positioned 64 KB
blocks. In the interest of seek reduction and throughput
improvement, the scheduler would be expected to consecu-
tively service many requests from p's set, then perform one
expensive head repositioning operation, and service many
of q's requests. This happens in practice, provided each
process maintains one or more pending requests whenever
the scheduler makes its decision: these moments in time
are called decision points. Such an experiment results in a
sustained throughput of 21 MB/s on our disk, owing to a
service time of 3ms for every 64 KB block.

Now consider a scenario where the above requests are is-
sued synchronously by the two processes, i.e., each process
generates a new request a few hundred microseconds after
its previous one �nishes. A work-conserving disk scheduler
never keeps the disk idle when there are any requests pend-
ing for service. It therefore tries to schedule some request
immediately after (say p's) request has completed. At this
decision point, process p has not yet been given the chance
to perform the computation required to generate its next re-
quest. This forces the scheduler into choosing a request from
q, performing a large head seek to that part of the disk, and
servicing that request. The subsequent request for p arrives
soon after, but disk scheduling is non-preemptible, and it is
now too late to service this nearby request. This leads to the
scheduler alternating in an FCFS manner between requests
from the two processes. Throughput falls to 5 MB/s, due
to 9ms of average seek time and 3ms of read time for every
64 KB block. The problem persists even if more than two
processes issue synchronous requests. In this case, CSCAN
degenerates to a round-robin scheduler, whereas SPTF al-
ternates between some pair of processes.

Example #2: Proportional-share schedulers
This example shows how deceptive idleness can a�ect sched-
ulers in ways other than degrading throughput. Consider a
proportional-share scheduler like Yet-another Fair Queueing
(YFQ) [7], Stride Scheduling [32], or Lottery Scheduling [31].
Their intended behaviour is to deliver disk service to multi-
ple applications (e.g., processes p and q) in accordance with
an arbitrary preassigned ratio. For an assignment of 1:2 (or
33%:66%), the scheduler may service a few requests for pro-
cess p, and correspondingly, about twice as many requests
for process q. However, if these processes maintain only one
outstanding request at critical moments, then as in the pre-
vious example, the work-conserving scheduler is forced to al-
ternate between requests from the two processes. It becomes
incapable of adhering to the desired contract for this work-
load, and instead achieves proportions much closer to 1:1.
Figure 1 shows results of such an experiment. This e�ect on
proportional-share schedulers has been noted in [26] x5.6.
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Figure 1: A proportional-share scheduler: The outer
pair of lines denote ideal scheduler response to an
allocation ratio of 1:2 to the two processes. Inner
pair of lines: synchronous I/O causes requests to be
almost alternately serviced from the two processes,
yielding proportions much closer to 1:1.

If we have three active processes instead, say p; q; r with
shares of 1:1:3, then Stride will be forced to schedule requests
from processes in the sequence r; p; r; q; etc. and achieve the
skewed proportions of 1:1:2. For nontrivial reasons, a lot-
tery disk scheduler under similar circumstances will deliver
proportions of 2:2:3 instead (see [14] x4.2.2 for details).

The underlying problem
In both examples, the scheduler reorders the available re-
quests according to its scheduling policy, but fails to meet
overall objectives of performance and quality of service. In
essence, processes that issue synchronous requests cause the
work-conserving disk scheduler to receive no requests from
that process, in time for the following decision point.1 This
leads to deceptive idleness, rendering the scheduler inca-
pable of exploiting spatial and temporal locality among syn-
chronous requests.

1This happens despite the system-wide request queue gen-
erally being long and bursty on loaded server systems [22].



2.1 Prefetching
It is possible to partially work around the problem of decep-
tive idleness by using asynchronous prefetch. This involves
predicting the future request issue pattern for a process,
and issuing its immediately forthcoming request before the
current one completes. Each process thus maintains mul-
tiple outstanding requests at decision points, and gives the
scheduler the chance to service consecutive requests from the
same process. Seek reduction opportunities can therefore
be exploited if requests issued by a process are sequential.
Likewise, a proportional-share scheduler would now have the
capacity to adhere to its contract, even for synchronous re-
quests.

Prefetch can be e�ected either explicitly by the application
or transparently by the kernel. However, both approaches
have fundamental limitations in terms of feasibility, accu-
racy, and overhead.

Application-driven prefetch
Applications can embrace programming paradigms and tech-
niques that prevent the onset of deceptive idleness. They
can use asynchronous I/O using APIs such aio read() to
prefetch future requests. Alternatively, they can roll their
own asynchronous I/O using multiple processes or kernel
threads, to proactively issue disk requests of the right type
(e.g., sequential).

There are several problems with this. (1) Applications are
often fundamentally unaware of their future access pattern,
and may be incapable of issuing accurate prefetch requests.
Examples include �lesystem metadata and database index
traversals, and predicting future requests in webservers. (2)
Applications may have to be written in a cumbersome pro-
gramming paradigm, whereas most applications are better
suited to a sequential programming style. (3) Existing ap-
plications would have to be rewritten for this purpose, which
may not be desirable or even possible under some circum-
stances. (4) Issuing explicit read requests using Unix API
functions (instead of memory mapping a �le) may entail
more data copying and cache pollution, which could be-
come expensive for in-memory workloads. Lastly, (5) the
aio read system call is an optional POSIX realtime exten-
sion, and may not be implemented or enabled in some op-
erating systems.

Kernel-driven prefetch
Filesystems can (and most do) try to guess future request
patterns for applications and issue separate asynchronous
prefetch requests2 for them. The usual reason is to overlap
computation with I/O [24], but this prefetching also pre-
vents deceptive idleness. There are, however, limitations to
this transparent approach. The �le system is typically even
less capable of predicting future access patterns than appli-
cations are. Prefetch needs an exact notion of the location of
the next request, and the penalties of misprediction can be
high. This forces the prefetching to be complicated, yet con-
servative. Applications such as database systems can issue
requests possessing spatial locality, but their access patterns
may be extremely diÆcult to detect and e�ectively prefetch.

2di�erent from synchronous readahead, where requests are
enlarged to 64 KB to amortize seek costs over larger reads.

Finally, sequentially accessed medium-sized �les are often
too small for the �lesystem to detect sequential access and
con�dently issue prefetch requests. In summary, prefetching
can potentially alleviate and even eliminate deceptive idle-
ness, but limitations in its feasibility and e�ectiveness under
many conditions discount it as a general solution.

Studies have shown an increasing trend in modern disk-
intensive applications to issue non-sequential disk requests
that nonetheless possess spatial locality [19, 30]. Prefetching
has limited utility in these cases, and it is vital to consider
complementary and more widely applicable alternatives.

3. ANTICIPATORY SCHEDULING
We now present a simple, practical, general, application-
transparent and low-overhead solution to deceptive idleness.
There are three necessary conditions for deceptive idleness
to manifest itself: (a) multiple disk-intensive applications
concurrently issuing synchronous disk requests, (b) the in-
trinsic non-preemptible nature of disk requests, and (c) a
work-conserving disk scheduler, which schedules a request
immediately upon completion of the previous request. Our
solution takes the intuitive approach of eliminating condi-
tion (c), by wrapping a given disk scheduling policy in a
non-work-conserving anticipatory scheduling framework.

When a request completes, the framework potentially waits
brie
y for additional requests to arrive, before dispatching
a new request to the disk. Applications that quickly gener-
ate another request can do so before the scheduler takes its
decision; deceptive idleness is thus avoided. The fact that
the disk remains idle during this short period is not neces-
sarily detrimental to performance. On the contrary, we will
show how a careful application of this method consistently
improves throughput and adheres more closely to desired
service allocations.

The question of whether and how long to wait at a given
decision point is key to the e�ectiveness and performance of
our system. In practice, the framework waits for the short-
est period of time over which it expects, in high probability,
for the bene�ts of waiting to outweigh the costs of keeping
the disk idle. An assessment of these costs and bene�ts is
only possible relative to a particular scheduling policy: a
seek reducing scheduler may wish to wait for contiguous or
proximal requests, whereas a proportional-share scheduler
may prefer weighted fairness as its primary criterion. To
allow for such 
exibility, while minimizing the burden on
the developer of a particular disk scheduler, the anticipa-
tory scheduling framework consists of three components: (1)
The original disk scheduler, which implements the schedul-
ing policy and is unaware of anticipatory scheduling; (2) a
scheduler-independent anticipation core; and, (3) adaptive
scheduler-speci�c anticipation heuristics for seek reducing
and proportional-share schedulers.

Figure 2 depicts the architecture of the framework. The
anticipation core implements the generic logic and timing
mechanisms for waiting, and relies on the anticipation heuris-
tic to decide if and how long to wait. This heuristic is im-
plemented separately for each scheduler, and has access to
the internal state of the scheduler. To apply anticipatory
scheduling to a new scheduling policy, one merely has to
implement an appropriate anticipation heuristic.
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Figure 2: Anticipatory scheduling framework

The remainder of this section spells out our two assumptions
about workload characteristics, then describes the anticipa-
tory scheduling framework, followed by appropriate antic-
ipation heuristics for seek reducing and proportional-share
schedulers. Finally it covers some implementation issues.

3.1 Workload assumptions
We tentatively make two assumptions about the granularity
at which applications issue related disk requests.

Assumption #1: Synchronous disk requests are issued by
individual processes. In most applications, a dependence be-
tween disk requests is explicitly re
ected in code structure,
so it is uncommon for multiple processes to coordinate to
issue a set of synchronous requests. This assumption serves
two purposes: (a) it considerably simpli�es the anticipation
heuristic, by requiring it to wait only for the process that
issued the last request, and (b) it allows the anticipation
core to optimize for the common case when this process gets
blocked upon issuing a synchronous request.

Assumption #2: Barring occasional deviations, all re-
quests issued by an individual process have approximately
similar degrees of spatial and temporal locality with respect
to other requests from that process, and these properties do
not change very rapidly with time. The anticipation heuris-
tic adaptively learns application characteristics on a per-
process granularity; this assumption constitutes the basic
requirement for adaptation to be possible. We therefore as-
sume that a process does not interleave disk requests with
markedly di�erent locality properties.

Experimental results with real applications reported in Sec-
tion 4 indirectly con�rm that these assumptions hold to a
suÆcient degree. Relaxing these assumptions to accommo-
date a larger range of workloads is the subject of future work;
some ideas in this direction are suggested in Section 5.2.2.

3.2 The anticipation core
A traditional work-conserving scheduler has two states, idle
and busy, with transitions on scheduling and completion of
a request. Applications can issue requests at any time; these

are placed into the scheduler's pool of requests. If the disk
is idle at this moment, or whenever another request com-
pletes, a request is scheduled: the scheduler's select function
is called, whereupon a request is chosen from the pool and
dispatched to the disk driver.

The anticipation core forms a wrapper around this tradi-
tional scheduler. Whenever the disk becomes idle, it in-
vokes the scheduler to select a candidate request (as before).
However, instead of dequeuing and dispatching immediately,
it �rst passes this request to the anticipation heuristic for
evaluation. A result of zero indicates that the heuristic has
deemed it pointless to wait; the core therefore proceeds to
dispatch the candidate request. However, a positive inte-
ger represents the waiting period in microseconds that the
heuristic deems suitable. The core initiates a timeout for
that period, and enters the new wait state. Though the
disk is inactive, this state di�ers from idle by having pend-
ing requests and an active timeout.

If the timeout expires before the arrival of any new request,
then the previously chosen request is dispatched without
further ado. However, new requests may arrive during the
waiting period; these requests are added to the pool. The
anticipation core then immediately asks the scheduler to se-
lect a new candidate request from the pool, and asks the
heuristic to evaluate this candidate. This may lead to im-
mediate dispatch of the new candidate request, or it may
cause the core to remain in the wait state, depending on the
scheduler's selection and the anticipation heuristic's evalu-
ation. In the latter case, the original timeout remains in
e�ect, thus preventing unbounded waiting by repeatedly re-
triggering the timeout. The state diagram in Figure 3 illus-
trates this decision process.

IDLE BUSY

WAIT

schedule...schedule...

heuristic: don’t wait
schedule...

request finish

heuristic: wait heuristic: don’t wait
(OR)  timeout expired

schedule...
heuristic: wait

Figure 3: Waiting mechanism, state diagram

There is a scheduler-independent optimization on the above
algorithm: if the process that issued the last request blocks
on I/O by issuing a synchronous request, then assumption
#1 suggests that a dependent request will not arrive from
any other process. The anticipation heuristic can thus be
short-circuited, and the chosen request immediately disp-
atched. This happens quite often in practice, even on occa-
sions when the heuristic would have decided to wait further.

3.3 Seek reducing schedulers
This section describes scheduler-speci�c anticipation heuris-
tics for seek reducing schedulers such as SPTF, Aged-SPTF
and CSCAN. The Shortest Positioning-Time First policy [34]
(also known as Shortest Time First [22] and Shortest Access-
Time First [15]) calculates the positioning time for each



available request from the current head position, and chooses
the one with the minimum. Our goal is to design an antici-
pation heuristic that maximizes the expected throughput.

The heuristic needs to evaluate the candidate request cho-
sen by the scheduling policy. The intuition is as follows: if
this candidate request is located close to the current head
position, then there is little point in waiting for additional
requests. Otherwise, using assumption #1, if the process
that issued the last request is likely to issue the next re-
quest soon (i.e., its expected median thinktime3 is small),
and if that request is expected to be close to the current
head position, then the heuristic decides to wait for it. The
waiting period is chosen as the expected 95-percentile think-
time, within which there is a 95% probability that a request
will arrive.

This simple idea is generalized into a succinct cost-bene�t
equation, intended to handle the entire range of values for
positioning times and thinktimes. Our throughput objective
translates to pro�tably balancing the bene�t of waiting, i.e.,
expected gains in positioning time, against the cost of wait-
ing, which is the additional time likely to be wasted. If lp
is the last request issuing process, and elapsed is the time
passed since completion of the previous request, then:

benefit = (calculate positioning time(Candidate)
� lp:expected positioning time)

cost = max(0;
lp:expected median thinktime� elapsed)

waiting duration = max(0;
lp:expected 95percentile thinktime� elapsed)

return (benefit > cost ? waiting duration : 0)

Positioning time for the candidate request is calculated with
a suitable estimator (more on this in Section 3.6). Regard-
ing the cost estimate: for requests that arrive before the me-
dian thinktime, the heuristic expects progressively shorter
periods of additional waiting; hence elapsed is subtracted
from the expected median thinktime. However, if we wait
beyond this median, the heuristic expects a request to be
issued sometime very soon, and cost at this point becomes
zero. Secondly, in the wait state, the anticipation core pre-
vents unbounded waiting by not retriggering the timeout
according to the heuristic's evaluation. Yet we calculate the
correct value of waiting duration: this is done to allow for
coarse-granularity timers, so that a request arriving after
the 95%ile thinktime will force an immediate dispatch as if
the timeout had occurred just then.

The adaptive component of the heuristic consists of collect-
ing online statistics on all disk read requests, to estimate
the three expected times. The expected positioning time for
each process is a weighted average over time of the position-
ing time for requests from that process, as measured upon
request completion. The decay factor is set to forget 95%

3We de�ne thinktime for a process issuing a request as the
interval between completion of the previous request issued
by the process and issue of a new request.

of the old positioning time value after ten requests, so the
heuristic adapts fast. An alternate, approximate method is
to track the expected seek distance of a request from the pre-
vious request issued by that process, and calculate expected
positioning time on the 
y.

Expected median and 95%ile thinktimes are estimated by
maintaining a decayed frequency table of request thinktimes
for each process. Thinktimes are computed from the time
of completion of the last request issued by a given process,
to the current time. If, however, the scheduler already has
a read request queued for this same process, then this new
request is treated as asynchronous and its thinktime is set
to zero. The heuristic maintains 30 per-process buckets that
store the count of requests that arrive after various think-
times, ranging from 0 to 15ms at a granularity of 500�s
per bucket. These bucket counts are all decayed by reduc-
ing them to 90% of their original values for every incoming
request for that process. The distribution of thinktimes usu-
ally looks like a bell curve; this is consistent with assumption
#2. (For many applications, the crest is located at about
1ms). The heuristic calculates the median and 95%ile points
of this curve; it does all the above for every incoming syn-
chronous request.

This heuristic is suitable for the conceptually simple SPTF
policy. We now consider modifying it for two other seek
reducing schedulers, namely Aged-SPTF and CSCAN.

Variant: Aged-SPTF
SPTF is known to su�er from potential starvation, since
requests for distant locations on the disk may never get ser-
viced. To bound response time, Aged-SPTF (also known
as Aged-SATF and Weighted-SPTF) has been proposed as
a variant: requests in the SPTF queue are associated with
priorities, which are raised in some manner (often gradually)
with queued time. A request with suÆciently high priority
overrules the SPTF decision and gets scheduled [15, 22, 34].

The anticipation heuristic for SPTF works for Aged-SPTF
also, with one minor limitation. When Aged-SPTF chooses
a distant request that is too old, the SPTF heuristic would
be unaware of this. It may decide to wait for additional,
nearby requests. However, even if a new request from the
last process arrives in this period, the scheduler then con-
tinues to pick the same old request. The last process then
gets blocked, and the scheduler-chosen candidate is serviced
as desired. This incurs one unnecessary thinktime on each
of such occasions; this minor performance problem can be
�xed by customizing the heuristic to the Aged-SPTF policy:
whenever Aged-SPTF selects a request that is di�erent from
the request that SPTF would correspondingly choose, then
we decide not to wait.

Variant: CSCAN: Cyclic SCAN
CSCAN (also known as C-LOOK) is an extremely popular
scheduling policy, and is implemented in many Unix-based
operating systems. It is the unidirectional version of El-
evator/SCAN/LOOK; it moves the head in one direction,
servicing all requests in its path, and then starts over at the
�rst available request.

Our anticipation heuristic for this scheduler is based on the



one for SPTF, with one additional clause. The statistics
collection module in the heuristic additionally maintains a
decayed expectation of the seek direction: forward or back-
ward. On evaluating a request, if the current candidate
involves a forward seek and the expected next request has a
fairly high likelihood (more than 80%) of a backward seek,
then we bypass the cost-bene�t equation and decide not to
wait. In the opposite case, we wait for the usual amount
of time. For applications performing random access, with
roughly 50% of the seeks pointing in each direction, this
heuristic for CSCAN is not ideal. This is because CSCAN
itself is poorly suited to handle this case.

3.4 Proportional-share schedulers
We next present an anticipation heuristic designed for a
proportional-share scheduler like Yet-another Fair Queueing
(YFQ) [7] or Stride [32]. These policies maintain weighted
virtual clocks to remember the amount of disk service re-
ceived by each process. A request is chosen from the pro-
cess with the smallest virtual clock, so as to advance them
in tandem.

Unfortunately, deceptive idleness forces these virtual clocks
to go out of sync. Some processes do not generate enough
requests in time, and their virtual clock lags behind. Pro-
cesses that genuinely issue few disk requests also lag be-
hind, but their expected thinktimes are high. Our heuristic
is therefore as simple as waiting for the last process, if it
meets three conditions: (a) it has no pending requests at
the time its last requests completes, (b) it has an expected
thinktime smaller than 3ms, and (c) it has a virtual clock
smaller than the minimum virtual clock of processes with
available requests (minclock). The 3ms threshold is chosen
somewhat arbitrarily; there is no consistent way to balance
weighted fairness against performance. 3ms is observed to
be larger than the thinktimes for most applications, without
being too large as to degrade performance. As before, we
wait for the 95%ile point of the thinktime distribution for
this process.

3.5 Heuristic combination
A proportional-share scheduler with an assignment of 1:2
can service one request from the �rst process for every two
requests from the second. Alternatively, it can enable some
seek reduction, by slightly relaxing the timescale on which it
operates. This allows the scheduler to service n requests for
the �rst process for every 2n requests for the second, where
each set might contain sequential requests. One variation
on this theme is suggested in [29], where the scheduler picks
from processes with virtual clocks between minclock and
minclock + � (where � is a relaxation threshold, and could
be 1 second). Among these, it chooses the request with the
smallest positioning time.

We propose a combination heuristic for this scheduler, thus
hinting at general methods of combining anticipation heuris-
tics. This combination is necessary because: (1) the heuris-
tic for SPTF, if applied directly here, would not wait for
either process if the access pattern were random, and would
thus violate the proportion assignment; (2) the heuristic for
Stride, if used, would wait only for the process with higher
share, and thus enable only partial seek reduction.

A straightforward approach of combining these two heuris-

tics is to separately evaluate the candidate request on each
of the two, and return the larger of the two evaluations. In
other words, if the waiting decision is taken for either reason,
then the combination will conservatively choose to wait.

We identify and accommodate for two minor performance
issues with this simplistic approach. Firstly, the Stride pol-
icy has been relaxed due to the introduction of � . Condition
(c) in the anticipation heuristic for Stride needs to be cor-
respondingly changed from minclock to minclock + � .

Secondly, consider the heuristic for SPTF waiting for se-
quential requests from process p, and successively servicing
many such requests. At some point, p's virtual clock may
become larger than minclock + � , in which case the con-
servative decision to wait becomes pointless. Our heuristic
watches for this condition and decides not to wait.

3.6 Implementation issues
There are two implementation issues that deserve elabora-
tion, namely calculating positioning time for requests and
building an inexpensive timeout mechanism.

Estimating access time for requests is nontrivial due to fac-
tors like rotational latency, track and cylinder skews, and
features of modern disks like block remapping and recal-
ibration. Nonetheless, much work has been done in this
area, and it is possible to build a software-only predictor
with over 90% accuracy [13, 15, 21, 35]. However, we used
a much simpler logical block number based approximation
to positioning time. A user-level program performs some
measurements to capture the mapping between the logical
block number di�erence between two requests and the cor-
responding head positioning time, and �ts a smooth curve
through these points. This takes about 3 minutes at disk
installation time, but can be made online and non-intrusive.
This method automatically accounts for seek time, average
rotational latency and track bu�ers. It has an accuracy of
about 75%, which we experimentally con�rm to be suÆcient,
given the insensitivity of the anticipation heuristic.

There are many possible timer mechanisms to choose from.
We use the i8254 Programmable Interval Timer (PIT) to
generate interrupts every 500�s, and build a simple timeout
system over that. Experiments demonstrate how this rather
coarse-grained timer is amply suÆcient for our purposes.
Each interrupt causes a processing overhead of about 4�s
on our hardware [2], thus causing about 1% CPU overhead
on computational workloads. Other timeout mechanisms
can be used in place of the i8254, if higher accuracy and
lower overhead are desired. Some pentium-class processors
(mostly SMPs) have an on-chip APIC that delivers �ne-
grained interrupts with an overhead of only 1 to 2�s per
interrupt. Alternatively, soft-timers [2] pose an extremely
light-weight alternative.

4. EXPERIMENTAL EVALUATION
This section evaluates the anticipatory scheduling frame-
work on a range of microbenchmarks and real workloads. We
show that this transparent kernel-level solution eliminates
deceptive idleness, and achieves signi�cant performance im-
provement and closer adherence to QoS objectives wherever
applicable.



Code and platform: We implemented the anticipatory
scheduling framework and heuristics in the FreeBSD-4.3 ker-
nel. The code comprises of a kernel module of about 1500
lines of C code, and a small patch to the kernel for neces-
sary hooks into the scheduler and disk driver. Unless oth-
erwise stated, our experiments are conducted on a single
550MHz Pentium-III system, equipped with a 7200rpm IBM
Deskstar 34GXP IDE disk and 128 MB of main memory.

Schedulers: All experiments with a seek reducing sched-
uler use Aged-SPTF unless otherwise speci�ed. We con�g-
ure this scheduler to perform shortest positioning-time �rst
scheduling, with a bounded per-request latency of 1 second.
This is found to achieve performance to within 1% of SPTF.
Anticipatory scheduling involves an intrinsic latency trade-
o�: servicing multiple requests from one process for seek
reduction necessarily increases request turnaround time for
another. However, most server-type applications would �nd
this small increase acceptable, in exchange for signi�cant
improvements in throughput. A system that desires lower
latency may reduce the above delay bound to say 100ms;
this was measured to reduce the throughput by at most 8%
on our system.

Metrics: Our experiments employ two metrics of applica-
tion performance: the application-observed throughput in
MB/s, and the disk utilization. In our framework, a disk
spends time either servicing requests (i.e., positioning head
and transferring data) or idling; we de�ne disk utilization
in an interval as the percentage of real time spent servicing
requests.4 This choice of the utilization metric depicts the
fraction of time that the disk is deliberately kept idle, and
helps in understanding some throughput measurements.

Turning o� �lesystem prefetch: Some operating sys-
tems, including FreeBSD, do not implement asynchronous
prefetch in some subsystems. For example, the VM sub-
system does not issue auxiliary prefetch requests for page
faults that are serviced from disk. Similarly, FreeBSD also
does not perform asynchronous prefetch for sendfile() and
readdir(). This allows us to e�ectively turn o� prefetching
for evaluation purposes, by mapping �les to memory and
accessing the memory locations.

Two sets of microbenchmarks, exhibiting variations in ac-
cess patterns and thinktimes, serve to illuminate the work-
ings of anticipatory scheduling as applied to seek reducing
schedulers.

4.1 Microbenchmark: Access patterns
We study the e�ect of anticipatory scheduling on synchro-
nous requests issued in di�erent access patterns, with and
without �lesystem prefetch enabled. Two processes rapidly
issue 64 KB disk read requests into separate 1 GB �les; these
are either sequential (seq), or target every alternate 64 KB
chunk (alter), or are randomly positioned within their re-
spective �les (random). Some experiments use the read sys-
tem call, for which FreeBSD 4.3 transparently issues asyn-
chronous prefetch requests if the access pattern is detected
to be sequential on disk. Other experiments map their �le
into memory using mmap, and fault on the memory pages;

4In contrast, a work-conserving scheduler never idles for a
busy workload, and might prefer to de�ne utilization as the
percentage of service time spent transferring data from disk.

these are not subject to asynchronous prefetch. Figure 4
shows the results.
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Figure 4: Impact of anticipatory scheduling on
disk throughput and utilization, using sequential,
alternate-block and random access workloads, and
read versus mmap based access.

Asynchronous prefetch ensures that sequential accesses us-
ing read achieve almost full disk bandwidth (about 21 MB/s).
However, �lesystems often lay out logically contiguous blocks
of a large �le as a set of separate regions on disk. On the
infrequent occasions that a boundary is crossed, FreeBSD's
prefetching mechanism temporarily assumes non-sequential
access and conservatively backs o�. Anticipatory schedul-
ing waits for such processes, thus exploiting spatial locality
within the large �le. Performance improves by about 5%,
by steadily fetching blocks from one �le until Aged-SPTF
forces it to switch.

Since mmap-ed accesses are not subject to prefetch, antici-
patory scheduling attains four times better throughput than
the original case. This achieves throughput almost equal to
the maximum disk bandwidth; the 6% di�erence between
the two is re
ected by an almost equal fraction of time that
the disk is kept idle. This mmap case is arguably a short-
coming of FreeBSD's prefetch implementation. However,
as exempli�ed in the following two cases of alter and ran-
dom, non-sequential disk access using read can use antici-
patory scheduling to signi�cantly improve throughput wher-
ever prefetching fails.

Consider the second set of experiments, where alternate
blocks are read. This defeats the FreeBSD prefetch heuris-
tic, causing both read and mmap to achieve only 5 MB/s.
Anticipatory scheduling improves throughput to the max-
imum that can be achieved for alternate blocks, i.e., half
the disk bandwidth. We will see several variants of such
non-sequential access in real workloads.

Lastly, in the random access case, the smaller improvements
(28% and 30%) by anticipatory scheduling are because each
process is performing random access within its respective
�le, so gains are mostly due to seek reduction between �les.

4.2 Microbenchmark: Varying thinktimes
The next set of four microbenchmarks illustrates the impact
of waiting on applications that take di�erent amounts of
time to issue the next request. Two processes map separate,
large �les into memory, and fault on these memory pages se-
quentially (thus without asynchronous prefetch). After ev-
ery 64 KB, they pause for some amount of time as described
below.



4.2.1 Symmetric processes:
Consider Figure 5, where time t on the horizontal axis repre-
sents the duration in milliseconds that each process spends
waiting between requests. Each data point in the through-
put graph is a separate experiment. For values of t up to
8ms, the original system alternates between requests from
the two processes, achieving only 5 MB/s. When thinktime
exceeds 8ms, the waiting time becomes comparable to re-
quest service time, and utilization for the original system
starts falling below 100%. Occasionally, deceptive idleness
is avoided by servicing two successive requests for the same
process. This fades away for larger values of t.
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Figure 5: Increasing thinktimes for both processes

With anticipatory scheduling enabled, the situation changes
as follows: When t = 0, we see the familiar situation where
throughput is four times that of the original system. For
larger values of t up to 8ms the e�ect of waiting becomes
increasingly burdensome on throughput and utilization, and
the improvement steadily declines. At about 8ms, the wait-
ing time becomes comparable to request service time, and
the cost-bene�t equation tips the other way. Performance
then approaches that of the original system to an increasing
degree. Measurements indicate that many applications have
very short thinktimes when busy, in the region of 200�s to
2ms. Hence, anticipatory scheduling is expected to achieve
signi�cant bene�ts on real applications.

4.2.2 Asymmetric processes:
Consider an alternative scenario in Figure 6 where only one
(slow) process waits for duration t between requests, while
the other (quick) process issues request as soon as its pre-
vious request completes. The original system alternates be-
tween the two processes' requests for t up to 12ms, but be-
yond that, two or more requests arrive from the quick pro-
cess for every request from the slow one. This causes partial
avoidance of deceptive idleness, due to which performance
gradually improves for increasing t.

With anticipatory scheduling enabled, the attained through-
put exceeds that of the original system by a large margin.
The anticipation heuristic is greedy, and for small values of
thinktime, it decides to wait for both processes. This results
in a gradual throughput decrease with increasing thinktime,
until a point is reached (4ms) where the heuristic waits for
the quick process but not for the slow process. Through-
put rises back to the maximum, with requests from the slow
process serviced only when Aged-SPTF induces a switch.
Note that Aged-SPTF only guarantees non-starvation, not
�ne-grained fairness.
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Figure 6: Increasing thinktimes for one process

4.2.3 Random thinktimes:
Next, we seek to understand how well the anticipation heuris-
tic adapts to thinktimes that vary rapidly within an experi-
ment. Interestingly, if a process waits for a random duration
uniformly distributed between 0 and t, it performs almost
as well as the deterministic counterpart. This is because the
expected median thinktime is judged to be roughly t=2, and
the expected 95%ile thinktime becomes almost t.

4.2.4 Adversary:
Since the heuristic copes with randomly varying thinktimes,
we try to exercise the pathological-case behaviour of the
heuristic by writing an intelligent adversary. Two symmet-
ric processes wait for a duration determined as follows: they
issue n rapid requests, then wait for a duration that just ex-
ceeds the timeout set by the heuristic, and repeat. This
application actively fails to comply with assumption #2,
and thus encumbers the heuristic from adapting e�ectively.
Results for varying n are shown in Figure 7. For n = 0, the
anticipatory scheduler can cope with all requests arriving
slowly. But for n between 1 and 4, the anticipation heuris-
tic performs only slightly worse than the original system:
by about 20%. This result indicates that even for a mali-
cious application, or when the assumptions in Section 3.1 do
not hold, the possible performance degradation is acceptably
small.
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Figure 7: Adversary application

The adversary issues several requests rapidly, followed by a
long wait. Interestingly, a similar situation arises in prac-
tice when applications issue very large read requests (say
1 MB), and the FreeBSD kernel breaks them up into 128 KB
chunks. In this case, the scheduler receives eight 128 KB
requests in rapid succession, followed by the application's
typically larger thinktime period. We solve this special case
by having the �lesystem 
ag such requests, whereupon the



anticipatory scheduling core treats them like one large re-
quest.

The adversary application causes many timeouts to expire,
and thus stresses the accuracy of the timer. In order to
understand the sensitivity of our results to the timer fre-
quency, we reran the experiment with timer granularities
of 50�s, 200�s, 500�s, and 1ms. Although the throughput
peaked at 500�s (because larger timeouts allow for the occa-
sional heuristic error), the greatest di�erence we saw among
the four trials was only 10%. This was also supported by
a similar experiment with the Apache webserver, where the
di�erence was negligible.

Solving deceptive idleness can clearly bring about signi�cant
bene�ts on microbenchmarks, but what is its impact on real
applications? To see this, we use two real applications (web-
server and linker), and two standard benchmarks (�lesystem
and database) that are expected to re
ect a wide range of
application workloads.

4.3 The Andrew filesystem benchmark
The Andrew Benchmark [12] attempts to capture a typi-
cal �leserver workload in a software development environ-
ment. It consists of k clients, each performing �ve phases:
(a) mkdir, which creates n directories, (b) cp, which copies
a standard set of 71 C source �les to each of these n directo-
ries, (c) stat, which aggressively lists all directory contents,
(d) scan, which reads all these �les using grep and wc, and
�nally (e) gcc, which compiles and links them. We con�g-
ured n to be 500, so that the repository size exceeds main
memory. We call this set of n directories a repository, and
instantiate one such repository for each of the k = 2 clients,
aiming to simulate concurrent access to a �leserver. This
experiment uses the same Aged-SPTF scheduler as before,
with and without anticipatory scheduling enabled.
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Figure 8: The Andrew Benchmark. The last pair of
bars are shown scaled down by a factor of 3.

A breakup of the execution times for individual benchmark
phases is presented in Figure 8. Consider the scan phase,
which is the only one that issues streams of synchronous read
requests. Anticipatory scheduling transparently reduces ex-
ecution time for this phase by 54%. Both grep and wc
on FreeBSD use read, not mmap, and would thus bene�t
from kernel prefetch. However, individual �les are small, so
this prefetch has little e�ect. Major seek reduction happens
here due to the �les being in the same directory, and thus
closely positioned on disk. Anticipatory scheduling enables

the scheduler to capitalize on these seek opportunities and
halve the execution time.

Other disk-intensive phases improve by smaller amounts:
16% for mkdir with metadata writes, and 5% for cp and
stat each (the latter typically gets cached in memory). The
gcc phase is CPU-bound, but also performs some disk I/O;
this aptly demonstrates the overhead of our system. There
is an increase in execution time by 1.7%, due to two factors:
CPU processing for the additional i8254 timer interrupts,
and the CPU overhead corresponding to the heuristic ex-
ecution routines (mainly statistics collection). This phase
strongly dominates total execution time, so that the overall
benchmark shows the smaller improvement of 8.4%.

Performance with one client is the same with or without an-
ticipatory scheduling; indeed, when there is only one stream
of synchronous requests, anticipatory scheduling plays no
role. Increasing the number of clients from 2 to 8 shows al-
most no performance di�erence: the scan phase improves by
57% in the latter case. This con�rms the applicability and
scalability of anticipatory scheduling to busy �leservers.

4.4 The Apache webserver
The Apache webserver employs a multi-process architecture
to service requests from clients. Requests that miss in the
main-memory cache are serviced from disk by the respective
process. This happens frequently for webservers with large
working sets, to the point of becoming disk-bound. In its de-
fault con�guration, Apache-1.3.12 (and also 2.0a9) mmaps
�les that are smaller than 4 MB, and writes it out to a net-
work socket. For larger �les, Apache reads the data into
application bu�ers �rst; this was done to prevent a swap-
based DoS attack on IRIX systems. Many other webservers
and ftp servers use similar mechanisms for �le transfer.

We �rst con�gure Apache to exclusively use either read or
mmap in a given experiment. We run the Apache web-
server with 3 client machines which host 16 client processes
each. Real websites have di�erent amounts of concurrency,
depending on amount and characteristics of incident load;
we therefore varied the number of clients over a wide range,
and observed very little di�erence in results. These clients
rapidly play requests from a trace selected from the CS de-
partment webserver at the University of California, Berke-
ley [6]. These requests have a median size of 4768 bytes,
a mean size of 86 KB, and a mean size of 13 KB if the
largest 5% of the requests are excluded. This trace is quite
disk-intensive, so 1000 requests target 745 distinct �les. The
scheduler, as before, is Aged-SPTF.

Figure 9 characterizes the observed throughputs and uti-
lizations. We observe a 29% improvement in throughput for
read, where anticipatory scheduling complements �lesystem
prefetch, and a larger 71% improvement for mmap (with-
out prefetch). Unlike in the Andrew Benchmark, all Apache
clients generate requests to the same repository, so requests
to an individual Apache process do not exhibit much local-
ity across �les. So seek reduction opportunities are mainly
in terms of servicing each �le fully before moving on to
the next. Many �les are too small for any seek reduc-
tion. Intermediate-sized �les are potential candidates for
prefetching, but �lesystem prefetch is conservative and does
not occur until a threshold number of requests are found to
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Figure 9: The Apache Webserver con�gured in two
modes, read and mmap. The former exempli�es the
practical limitations of �lesystem prefetch.

be sequential. Anticipatory scheduling e�ects the 29% im-
provement in this domain. Prefetch occurs for reads on large
�les, but not for mmap. This accounts for the large di�er-
ence in performance between the two methods of access. In
the default con�guration (with mmap or read depending on
�le size), Apache yields 2.2 MB/s on the original system and
3.5 MB/s with anticipatory scheduling; this improvement of
59% lies between those for the read and mmap cases.

4.5 The GnuLD linker
This experiment involves the last stage of a FreeBSD kernel
build, starting from a cold �lesystem cache. The GNU linker
reads 385 object �les from disk. 75% of these �les are under
10 KB, whereas 96% are under 25 KB. After reading all their
ELF headers, GnuLD performs up to 9 (but usually about
6) small, non-sequential reads in each �le, corresponding to
each ELF section. These reads are separated by computa-
tion required for the linking process.
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Figure 10: The GNU Linker: multiple, concurrent
instances cause deceptive idleness, which is elimi-
nated by anticipatory scheduling.

The experiment in Figure 10 demonstrates the performance
of one and two simultaneous instances of GnuLD on disjoint
repositories. We use two schedulers this time, Aged-SPTF
and CSCAN, to demonstrate the impact of their respective
heuristics. With one synchronous request issuer process,
both schedulers result in execution times of about 1.8 sec-
onds each. We would normally expect this to double for two
instances of GnuLD. However, deceptive idleness causes an
increase in execution time by a factor of 5.5 instead. This is
again because non-sequential accesses preclude transparent
�lesystem prefetching.

Anticipatory scheduling brings about a bene�t of 68% in the
Aged-SPTF case, and causes performance to scale almost ex-

actly as expected (i.e., to twice the execution time of a single
process). The CSCAN scheduler, on the other hand, always
services requests in the forward direction. But object �les
are accessed in arbitrary order; CSCAN therefore intrinsi-
cally precludes anticipatory scheduling from attaining the
full potential for seek reduction. We see a performance im-
provement of only 48%; this execution time is 56% higher
than the Aged-SPTF case.

4.6 The TPC-B database benchmark
The TPC-B benchmark, speci�ed by the Transaction Pro-
cessing Council in 1994, exercises a database system on
simple, random, update-intensive operations into a large
database, and is intended to re
ect typical bank transac-
tions [27]. Though it is considered outdated, it serves to
illustrate the impact of anticipatory scheduling on a read-
write workload.

We implement the above with a MySQL database and two
client processes. However, we somewhat deviate from the
setup speci�ed in TPC-B; our main goal is to demonstrate
the gains due to anticipatory scheduling, rather than to ob-
tain performance data for our hardware con�guration. (1)
Individual records in the database are required to be at least
100 bytes large. MySQL has computational overheads that
made it CPU-bound for record sizes of 100 bytes, so we use
4 KB records to make data I/O the bottleneck. (2) We
use a database size of 780 MB, thus considerably exceed-
ing the 128 MB main memory size; our hardware is capable
of supporting larger databases. (3) MySQL does not sup-
port transactions. Many databases maintain a transaction
log, which could potentially become the performance bot-
tleneck. (4) Figure 11 depicts four experiments. The clients
in the �rst two experiments issue update queries as required
by TPC-B, but those in the last two replace the update op-
eration by a select. (5) Finally, both clients in the �rst
and third experiments issue queries directed at the same
database, as required by TPC-B. The second and fourth ex-
periments are a variant, where the two clients issue requests
to two separate databases.
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Figure 11: The TPC-B database benchmark and
variants: two clients issuing update versus select
queries into the same versus di�erent databases.

An update query reads the record �rst, and then issues an
asynchronous delayed write request. The presence of enough
delayed writes can give the scheduler more choices, and al-
leviate the e�ect of deceptive idleness. Also, seek reduction
within a database is severely limited due to almost random
queries therein, so the �rst experiment shows a net improve-



ment of only 2%. The second experiment physically sepa-
rates the two databases on disk; the impact of anticipatory
scheduling is now more pronounced due to seek reduction op-
portunities within and between databases, and we observe
a 30% improvement despite the delayed write requests. Ab-
solute performance is understandably lower than in the �rst
case, due to large seeks between the two databases. Finally,
gains due to anticipatory scheduling are best brought out in
the absence of any delayed writes, i.e., when the update op-
eration is reduced to just a select, involving one synchronous
read request. We observe throughput improvements by 5%
and 60% for requests to the same and di�erent databases
respectively.

In summary, our experiments indicate that a database-like
workload often stands to gain by the transparent deployment
of anticipatory scheduling in the operating system. How-
ever, modern commercial databases are highly optimized,
and it is likely that they implement some form of application-
level prefetching; we have not explored this issue further.

4.7 Proportional-share Scheduling
This experiment demonstrates the impact of the anticipation
heuristic for proportional-share schedulers, and the combi-
nation heuristic. The workload is chosen to be the fourth
TPC-B variant in the database experiment above: select
operations on di�erent databases, to achieve throughputs
of 61 and 98 transactions/sec (i.e., 60% improvement with
anticipatory scheduling).

Figure 12 depicts an experiment where this workload is sub-
ject to proportional scheduling. We use the Stride scheduler
augmented with underlying seek reduction, as described in
Section 3.5; the relaxation threshold � is set to 1 second.
Proportions of 1:2 are assigned to the two TPC-B clients p
and q; these are in terms of disk utilization (not throughput,
without loss of generality). In the three cases, the anticipa-
tion framework is either disabled, or separately con�gured
with the Stride or the combination heuristic respectively.
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Figure 12: Proportional-share scheduler. Three ex-
periments: (4) original: 1:1 proportions, (�) antici-
patory with proportional heuristic: 1:2 proportions,
and (Æ) anticipatory with combination heuristic: 1:2
proportions with maximum throughput.

In the original system, the scheduler always multiplexes
between requests from the two processes, and incorrectly
achieves proportions of approximately 1:1, with the fairly

low throughput of 60 tps. When we turn on anticipatory
scheduling with the heuristic for proportional-share sched-
ulers, it realizes that process q (with the higher share) is lag-
ging behind, and waits for it. With average seek and transfer
times of 9ms and 3ms, the scheduler manages to achieve 1:2
proportions by servicing 5 requests from q for every request
from p. This is suÆcient to exploit locality between requests
of one process, namely q; throughput improves to 77 tps, i.e.,
by about half the maximum possible. This results in a cor-
responding total utilization drop of about 2%, as is seen by
utilizations of both processes decreasing proportionally.

The combination heuristic, on the other hand, realizes the
seek reduction potential in waiting for both processes. It
thus services several requests from each process, and achieves
the full 98 tps throughput, while retaining proportions of
1:2.

4.8 Advanced hardware
We wish to determine the e�ect of anticipatory scheduling
on modern hardware, using the next generation CPUs, disks
and controllers. Studies indicate that head seek time im-
proves more slowly than data transfer time; this trend will
further aggravate the e�ects of deceptive idleness. Function-
ality supported by modern controllers like tagged queueing
and improved track bu�ering and controller-level prefetching
may become underused for synchronous I/O. On the other
hand, track bu�ering may assist �lesystem prefetching for
medium-sized sequentially accessed �les, and thus alleviate
the problem in some cases. Track bu�ering also allows the
scheduler to wait for the next request, without requiring a
complete rotation to read the adjacent sector. On a di�erent
note, an increase in CPU speed corresponds to a reduction
in application thinktime, which is advantageous for waiting.
Thus, a number of tradeo�s can in
uence the precise gains
due to anticipatory scheduling.

To explore this issue, we perform some experiments on an
800MHz Athlon system, with a 15,000 rpm Seagate Cheetah
ST318451LW SCSI-3 disk and an Adaptec 19160B Ultra160
controller. Speci�cally, we repeat two experiments: the mi-
crobenchmark with di�erent access patterns (Section 4.1)
and the Apache webserver experiment (Section 4.4). Re-
sults are in Figure 13.
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Figure 13: Experiments performed on advanced
hardware: 15,000 rpm SCSI disk, 800 MHz CPU.

We note that the maximum bandwidth on this disk is 55%
higher than on our original IDE disk, due to a correspond-
ing increase in rotational speed. However, deceptive idleness
causes both disks to deliver nearly the same low through-



put in the presence of large seeks; this magni�es the best-
case gains of anticipatory scheduling to a factor of 5.5, as
compared to the earlier factor of 4. Other aspects of this
microbenchmark are similar to those on the IDE disk.

Next, consider the Apache webserver experiment. Improve-
ments for the read and mmap con�gurations are 12% and
57%. While this is still signi�cant, it is lower than the IDE
counterparts. Improved rotational speed, di�erent disk ge-
ometry and better track bu�ering result in relatively faster
servicing of short seeks; these are common in the Apache
workload, thus leading to smaller improvements.

To summarize, modern hardware does su�er from deceptive
idleness, and stands to gain from anticipatory scheduling.
The actual improvements expected on future hardware can
be either more or less, depending on precise hardware details
and application characteristics.

On a related note, we consider the impact of deceptive idle-
ness and anticipatory scheduling on other disk types, such
as redundant arrays of inexpensive disks (RAIDs), just a
bunch of disks (JBODs), and network disks. We have not
investigated this issue in suÆcient depth, but we believe
that deceptive idleness can a�ect such disks, and that antic-
ipatory scheduling can be bene�cial. The positioning time
estimator would need to derive a useful model of device be-
haviour, including head positions and redundant copies of
data; we believe that this is the key step to adapting antic-
ipatory scheduling to such hardware.

5. DISCUSSION
This section discusses the practical impact of anticipatory
scheduling, and suggests improvements to its design.

5.1 Relevance of anticipatory scheduling
Many applications perform non-sequential read I/O on large
�les, or access many small �les colocated on disk, such as
those in the same directory. Applications such as web-
servers and databases often have huge working sets, and
issue read requests that cannot be satis�ed from memory.
This general tendency of applications to issue concurrent,
synchronous, non-sequential disk requests has been on the
rise [19, 30]. These requests typically do not bene�t from
traditional �lesystem prefetching, and yet possess enough lo-
cality to be excellent candidates for seek reduction. This has
driven the need for an alternative and more general approach
to complement prefetching. Since anticipatory scheduling is
based on a much weaker form of prediction, it is feasible in
many situations where prefetching is diÆcult.

Proportional-share schedulers are increasingly gaining promi-
nence in modern systems; for example, they are used in var-
ious high-level quality of service systems like using reserva-
tion domains to isolate co-hosted websites [8], and perform-
ing admission control to guarantee predictable performance
of webservers [3]. It is important for these disk schedulers to
adhere to their contract; anticipatory scheduling facilitates
this for applications issuing synchronous I/O. In practice,
proportional-share disk schedulers will almost always be de-
ployed in combination with a seek reducing scheduler [29].
Our experiments have demonstrated how the combination
heuristic brings about simultaneous improvement of both
contract adherence and performance.

Real-time disk schedulers (either pure or in combination
with seek reducing schedulers) are commonly used to serve
and view multimedia content [9, 11]. Under certain circum-
stances, it is possible for deceptive idleness to cause such
schedulers to multiplex between requests from di�erent pro-
cesses, and consistently violate deadlines. We believe that
the anticipatory scheduling framework is applicable to real-
time scheduling, but a full exploration of the design and
merits of an anticipation heuristic is beyond the scope of
this paper.

5.2 Potential improvements
We suggest two approaches to improve on our proposed de-
sign. These are aside from the obvious improvements of
making the timing mechanism and the positioning time es-
timator cheaper and more accurate.

5.2.1 Accumulate more statistics
It is possible for the anticipation heuristic to make subop-
timal decisions. We can reduce this chance by augmenting
its adaptation mechanism with additional statistics:

(1) Besides tracking expected thinktimes and positioning
times, we could collect statistics about the variance of these
estimates. This gives the heuristic an idea of how accurate
these estimates really are. We could then use a technique
such as covariance resetting to discard all previously accu-
mulated statistics whenever this variance becomes too high.
(2) The heuristic could keep track of how frequently time-
outs expire for each process; if this exceeds some thresh-
old rate, then regardless of all other notions of accuracy, it
would know that something is wrong. (3) The positioning
time estimator may not be accurate; however, it can mea-
sure positioning time after a request has completed service.
This provides an indicator for the error in estimation, and
thus, our con�dence in future decisions. (4) An application
might use aio read to issue requests that are actually syn-
chronous; the heuristic can determine this post-facto, and
remember it to optimize future decisions.

5.2.2 Relax the two workload assumptions
The anticipatory scheduling framework waits for the last
request issuing process, and collects statistics at a process
granularity. Though this is easily the common case, relaxing
the assumptions in Section 3.1 can enable the anticipation
heuristics to support a wider range of applications, of the
following types:

(1) Some proportional-share disk schedulers have a notion
of resource principals di�erent from processes, like resource
containers [4] and reservation domains [8]. (2) Also, some-
times a group of processes may collectively issue synchronous
requests. (3) Applications may simultaneously generate dif-
ferent access patterns on di�erent �le descriptors. (4) Some
programs may issue two kinds of disk requests from two
di�erent parts of the program code, but on the same �le de-
scriptor. (5) Seek reduction intrinsically deals with requests
in the same region on the disk; online clustering can classify
requests into groups.

To relax the assumptions, the heuristic can collect statistics
at all levels of abstraction, i.e., processes, threads, instruc-
tion pointer for thread, �le descriptors, and disk region {



along with their variances. The heuristic can then choose the
highest consistent level out of these. This has low variance,
is expected to be correct, and contains most information.

6. RELATED WORK
This section points out interesting phenomena analogous
to deceptive idleness, and methods related to anticipatory
scheduling, in each of three domains: disk, CPU and net-
work interface scheduling.

Anticipatory scheduling is based on the non-work-conserving
scheduling discipline. To our knowledge, the only other non-
work-conserving disk scheduler solves a memory manage-
ment issue for mixed real-time and best-e�ort workloads. It
refrains from servicing all outstanding best-e�ort requests,
and conserves bu�er space for future real-time requests [10].

The basic idea of anticipatory disk scheduling has been inde-
pendently suggested in a posting to the Linux-kernel mailing
list { coincidentally under the same name [25].

For write requests, the AIX operating system implements
I/O pacing to prevent programs from saturating the sys-
tem's I/O facilities. This enforces per-�le high and low wa-
ter marks on the number of queued requests [33]. This low
water mark bu�ers write requests and increases opportuni-
ties for seek reduction; it can be viewed as the counterpart
of anticipatory scheduling for delayed write requests.

Also in the context of eÆciently handling asynchronous re-
quests, freeblock scheduling [16] has been proposed to in-
crease media bandwidth utilization by potentially servicing
asynchronous requests enroute to the synchronous ones.

Filesystem prefetching is a well-researched area [24], and for
regular workloads, asynchronous prefetch can transparently
eliminate deceptive idleness (Section 2.1). There is a large
body of work in improving the feasibility and e�ectiveness of
prefetch using techniques such as application-level hints [18]
and transparent compiler-directed approaches [17].

Deceptive idleness creates a momentary shortage of suitable
requests; a di�erent type of scheduler starvation arises in
the context of the Aged-SPTF scheduler. Recall from Sec-
tion 3.3 that priorities are assigned to requests in the SPTF
queue, and these are increased over time. If this increase
is performed abruptly at some time threshold, and if the
rate of incoming requests exceeds service rate, then every
request choice will get forced, and the scheduler degenerates
to FCFS. The solution in this case involves gradually raising
request priorities [15].

The CPU scheduling discipline being preemptible, there is
no analog of deceptive idleness. There is, however, the
equivalent of high preemption cost in switching between
processes: aÆnity scheduling attempts to schedule between
many threads to improve cache reuse [28]. On a di�erent
note, non-work-conserving CPU schedulers have been moti-
vated by the need to handle bursty and unexpected work-
loads; these are based on maintaining one or more CPUs in
reserve [20]. Similarly, non-work-conserving request sched-
ulers have been used to support prioritized workloads in
web content hosting, for di�erentiated levels of service [1].
In comparison, anticipatory disk scheduling is a distinctly
di�erent type of non-work-conserving scheduling.

The network packet scheduling discipline is non-preemptible,
but deceptive idleness is unlikely in this domain. High band-
width-delay products drive applications to maintain win-
dows of outstanding requests, due to which the packet sched-
uler never faces a shortage of requests from an individual

ow. Interestingly, there is reason to optimize in the op-
posite direction: context switching overhead is negligible,
and it is important to avoid burstiness. WF2Q is a work-
conserving scheduling policy that tries to interleave requests
as much as possible, more than even WFQ does [5]. Finally,
non-work-conserving schedulers have been used in packet
scheduling by Zhang and Knightly to handle bursty work-
loads, by holding packets in the network and simulating the
original traÆc stream [36].

7. CONCLUSION
This paper identi�es the problem of deceptive idleness in
the disk subsystem, and proposes the anticipatory schedul-
ing framework as a general and e�ective solution. This sim-
ple, application-transparent method brings about signi�cant
improvements in throughput and adherence to quality of
service objectives for synchronous disk I/O. The framework
consists of a scheduler-independent core, with separate an-
ticipation heuristics proposed for a variety of seek reducing
and proportional-share schedulers to address their disparate
needs. This solution complements prefetching techniques
deployed at the application and kernel levels, and is most
useful in frequently occurring situations where prefetching
is diÆcult or infeasible. It is easy to implement, and suited
for incorporation into general-purpose operating systems.

This paper evaluates anticipatory scheduling under a range
of workloads. Microbenchmarks characterize the intrinsic
properties of the solution, whereas real applications and
standard benchmarks evaluate its applicability and e�ective-
ness in realistic scenarios. The Apache webserver is found
to deliver 29% and 71% more throughput in two con�gura-
tions. The Andrew �lesystem benchmark runs faster by 8%
(54% for the synchronous phase). Variants of the TPC-B
database benchmark exhibit improvements between 2% and
60%. Proportional-share schedulers become empowered to
deliver application-desired proportions for synchronously is-
sued requests. All this is accomplished with little overhead.
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